The deployment flexibility and maneuverability of Unmanned Aerial Vehicles (UAVs) increased their adoption in various applications, such as wildfire tracking, border monitoring, etc. In many critical applications, UAVs capture images and other sensory data and then send the captured data to remote servers for inference and data processing tasks. However, this approach is not always practical in real-time applications due to the connection instability, limited bandwidth, and end-to-end latency. One promising solution is to divide the inference requests into multiple parts (layers or segments), with each part being executed in a different UAV based on the available resources. Furthermore, some applications require the UAVs to traverse certain areas and capture incidents; thus, planning their paths becomes critical particularly, to reduce the latency of making the collaborative inference process. Specifically, planning the UAVs trajectory can reduce the data transmission latency by communicating with devices in the same proximity while mitigating the transmission interference. This work aims to design a model for distributed collaborative inference requests and path planning in a UAV swarm while respecting the resource constraints due to the computational load and memory usage of the inference requests. The model is formulated as an optimization problem and aims to minimize latency. The formulated problem is NP-hard so finding the optimal solution is quite complex; thus, this paper introduces a real-time and dynamic solution for online applications using deep reinforcement learning. We conduct extensive simulations and compare our results to the-state-of-the-art studies demonstrating that our model outperforms the competing models.
translated by 谷歌翻译
尽管深度神经网络(DNN)已成为多个无处不在的应用程序的骨干技术,但它们在资源受限的机器中的部署,例如物联网(IoT)设备,仍然具有挑战性。为了满足这种范式的资源要求,引入了与IoT协同作用的深入推断。但是,DNN网络的分布遭受严重的数据泄漏。已经提出了各种威胁,包括黑盒攻击,恶意参与者可以恢复送入其设备的任意输入。尽管许多对策旨在实现隐私的DNN,但其中大多数会导致额外的计算和较低的准确性。在本文中,我们提出了一种方法,该方法通过重新考虑分配策略而无需牺牲模型性能来针对协作深度推断的安全性。特别是,我们检查了使该模型容易受到黑盒威胁的不同DNN分区,并得出了应分配每个设备的数据量以隐藏原始输入的所有权。我们将这种方法制定为一种优化,在该方法中,我们在共同推导的延迟与数据级别的数据级别之间建立了权衡。接下来,为了放大最佳解决方案,我们将方法塑造为支持异质设备以及多个DNN/数据集的增强学习(RL)设计。
translated by 谷歌翻译
人工智能(AI)见证了各种物联网(IoT)应用和服务的重大突破,从推荐系统到机器人控制和军事监视。这是由更容易访问感官数据的驱动以及生成实时数据流的Zettabytes(ZB)的普遍/普遍存在的设备的巨大范围。使用此类数据流来设计准确的模型,以预测未来的见解并彻底改变决策过程,将普遍的系统启动为有价值的范式,以实现更好的生活质量。普遍的计算和人工智能的汇合普遍AI的汇合将无处不在的物联网系统的作用从主要是数据收集到执行分布式计算,并具有集中学习的有希望的替代方案,带来了各种挑战。在这种情况下,应设想在物联网设备(例如智能手机,智能车辆)和基础架构(例如边缘节点和基站)之间进行明智的合作和资源调度,以避免跨越开销和计算计算并确保最大的性能。在本文中,我们对在普遍AI系统中克服这些资源挑战开发的最新技术进行了全面的调查。具体而言,我们首先介绍了普遍的计算,其架构以及与人工智能的相交。然后,我们回顾AI的背景,应用和性能指标,尤其是深度学习(DL)和在线学习,在无处不在的系统中运行。接下来,我们从算法和系统观点,分布式推理,培训和在线学习任务中,对物联网设备,边缘设备和云服务器的组合进行了分布式推理,培训和在线学习任务的深入文献综述。最后,我们讨论我们的未来愿景和研究挑战。
translated by 谷歌翻译